Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.811
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2317978121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593069

RESUMO

Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.


Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , Mamíferos
2.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602916

RESUMO

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Assuntos
Arginina , Ligases , Arginina/metabolismo , Citrulina/metabolismo , Amônia , Ornitina/genética , Trifosfato de Adenosina/metabolismo , Fosfatos , Adenosina , Catálise
3.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659042

RESUMO

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Assuntos
Neoplasias Ósseas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligases , MicroRNAs , Osteossarcoma , Proteínas do Grupo Polycomb , RNA Circular , Regulação para Cima , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , RNA Circular/genética , MicroRNAs/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Masculino , Animais , Progressão da Doença , Linhagem Celular Tumoral , Feminino , Ativação Transcricional/genética , Prognóstico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Plant Signal Behav ; 19(1): 2341506, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38607960

RESUMO

Sugar signaling forms the basis of metabolic activities crucial for an organism to perform essential life activities. In plants, sugars like glucose, mediate a wide range of physiological responses ranging from seed germination to cell senescence. This has led to the elucidation of cell signaling pathways involving glucose and its counterparts and the mechanism of how these sugars take control over major hormonal pathways such as auxin, ethylene, abscisic acid and cytokinin in Arabidopsis. Plants use HXK1(Hexokinase) as a glucose sensor to modulate changes in photosynthetic gene expression in response to high glucose levels. Other proteins such as SIZ1, a major SUMO E3 ligase have recently been implicated in controlling sugar responses via transcriptional and translational regulation of a wide array of sugar metabolic genes. Here, we show that these two genes work antagonistically and are epistatic in controlling responsiveness toward high glucose conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucose , Ligases/genética , Desenvolvimento Vegetal , Ubiquitina-Proteína Ligases/genética
5.
Nat Commun ; 15(1): 2156, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461154

RESUMO

This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Mitocondriais , Doença dos Neurônios Motores , Proteína FUS de Ligação a RNA , Animais , Humanos , Camundongos , Esclerose Amiotrófica Lateral/metabolismo , DNA Mitocondrial/genética , Ligases/metabolismo , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
6.
Biotechnol J ; 19(3): e2300711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528369

RESUMO

DNA ligases catalyze bond formation in the backbone of nucleic acids via the formation of a phosphodiester bond between adjacent 5' phosphates and 3' hydroxyl groups on one strand of the duplex. While DNA ligases preferentially ligate single breaks in double-stranded DNA (dsDNA), they are capable of ligating a multitude of other nucleic acid substrates like blunt-ended dsDNA, TA overhangs, short overhangs and various DNA-RNA hybrids. Here we report a novel DNA ligase from Cronobacter phage CR 9 (R2D Ligase) with an unexpected DNA-to-RNA ligation activity. The R2D ligase shows excellent efficiency when ligating DNA to either end of RNA molecules using a DNA template. Furthermore, we show that DNA can be ligated simultaneously to both the 5' and 3' ends of microRNA-like molecules in a single reaction mixture. Abortive adenylated side product formation is suppressed at lower ATP concentrations and the ligase reaction reaches near completion when ligating RNA-to-DNA or DNA-to-RNA. The ligation of a DNA strand to the 5'-PO4 2- end of RNA is unique among the commercially available ligases and may facilitate novel workflows in microRNA analysis, RNA sequencing and the preparation of chimeric guide DNA-RNA for gene editing applications.


Assuntos
DNA Ligases , MicroRNAs , DNA Ligases/química , DNA Ligases/metabolismo , Ligases , DNA/genética , Sequência de Bases
7.
Front Immunol ; 15: 1335519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515760

RESUMO

Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Ubiquitina , Ligases , RNA não Traduzido/genética , MicroRNAs/genética , Complexo de Endopeptidases do Proteassoma
8.
Clin Exp Rheumatol ; 42(2): 277-287, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488094

RESUMO

OBJECTIVES: The CLASS (Classification Criteria of Anti-Synthetase Syndrome) project is a large international multicentre study that aims to create the first data-driven anti-synthetase syndrome (ASSD) classification criteria. Identifying anti-aminoacyl tRNA synthetase antibodies (anti-ARS) is crucial for diagnosis, and several commercial immunoassays are now available for this purpose. However, using these assays risks yielding false-positive or false-negative results, potentially leading to misdiagnosis. The established reference standard for detecting anti-ARS is immunoprecipitation (IP), typically employed in research rather than routine autoantibody testing. We gathered samples from participating centers and results from local anti-ARS testing. As an "ad-interim" study within the CLASS project, we aimed to assess how local immunoassays perform in real-world settings compared to our central definition of anti-ARS positivity. METHODS: We collected 787 serum samples from participating centres for the CLASS project and their local anti-ARS test results. These samples underwent initial central testing using RNA-IP. Following this, the specificity of ARS was reconfirmed centrally through ELISA, line-blot assay (LIA), and, in cases of conflicting results, protein-IP. The sensitivity, specificity, positive likelihood ratio and positive and negative predictive values were evaluated. We also calculated the inter-rater agreement between central and local results using a weighted κ co-efficient. RESULTS: Our analysis demonstrates that local, real-world detection of anti-Jo1 is reliable with high sensitivity and specificity with a very good level of agreement with our central definition of anti-Jo1 antibody positivity. However, the agreement between local immunoassay and central determination of anti-non-Jo1 antibodies varied, especially among results obtained using local LIA, ELISA and "other" methods. CONCLUSIONS: Our study evaluates the performance of real-world identification of anti-synthetase antibodies in a large cohort of multi-national patients with ASSD and controls. Our analysis reinforces the reliability of real-world anti-Jo1 detection methods. In contrast, challenges persist for anti-non-Jo1 identification, particularly anti-PL7 and rarer antibodies such as anti-OJ/KS. Clinicians should exercise caution when interpreting anti-synthetase antibodies, especially when commercial immunoassays test positive for non-anti-Jo1 antibodies.


Assuntos
Aminoacil-tRNA Sintetases , Miosite , Humanos , Ligases , Reprodutibilidade dos Testes , Bancos de Espécimes Biológicos , Autoanticorpos , Miosite/diagnóstico
9.
BMC Plant Biol ; 24(1): 211, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519917

RESUMO

Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.


Assuntos
Juglans , Juglans/genética , Ligases/genética , Filogenia , Melhoramento Vegetal , Estresse Salino/genética
10.
Cell Commun Signal ; 22(1): 187, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515158

RESUMO

BACKGROUND: Pyroptosis of the renal tubular epithelial cells (RTECs) and interstitial inflammation are central pathological characteristics of acute kidney injury (AKI). Pyroptosis acts as a pro-inflammatory form of programmed cell death and is mainly dependent on activation of the NLRP3 inflammasome. Previous studies revealed that acetyl-CoA synthetase 2 (ACSS2) promotes inflammation during metabolic stress suggesting that ACSS2 might regulate pyroptosis and inflammatory responses of RTECs in AKI. METHODS AND RESULTS: The expression of ACSS2 was found to be significantly increased in the renal epithelial cells of mice with lipopolysaccharide (LPS)-induced AKI. Pharmacological and genetic strategies demonstrated that ACSS2 regulated NLRP3-mediated caspase-1 activation and pyroptosis through the stimulation of the KLF5/NF-κB pathway in RTECs. The deletion of ACSS2 attenuated renal tubular pathological injury and inflammatory cell infiltration in an LPS-induced mouse model, and ACSS2-deficient mice displayed impaired NLRP3 activation-mediated pyroptosis and decreased IL-1ß production in response to the LPS challenge. In HK-2 cells, ACSS2 deficiency suppressed NLRP3-mediated caspase-1 activation and pyroptosis through the downregulation of the KLF5/NF-κB pathway. The KLF5 inhibitor ML264 suppressed NF-κB activity and NLRP3-mediated caspase-1 activation, thus protecting HK-2 cells from LPS-induced pyroptosis. CONCLUSION: Our results suggested that ACSS2 regulates activation of the NLRP3 inflammasome and pyroptosis by inducing the KLF5/NF-κB pathway in RTECs. These results identified ACSS2 as a potential therapeutic target in AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Camundongos , Acetilcoenzima A/metabolismo , Injúria Renal Aguda/metabolismo , Caspase 1/metabolismo , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Ligases/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Sepse/complicações , Sepse/metabolismo
11.
Plant Physiol Biochem ; 208: 108523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38492487

RESUMO

The development of pollen is critical to male reproduction in flowering plants. Acyl-CoA synthetase (ACOS) genes play conserved functions in regulating pollen development in various plants. Our previous work found that knockout of the SlACOS1 gene in tomato might decrease fruit setting. The current study further revealed that SlACOS1 was important to pollen development and male fertility. The SlACOS1 gene was preferentially expressed in the stamen of the flower with the highest expression at the tetrad stage of anther development. Mutation of the SlACOS1 gene by the CRISPR/Cas9-editing system reduced pollen number and viability as well as fruit setting. The tapetum layer exhibited premature degradation and the pollen showed abnormal development appearing irregular, shriveled, or anucleate in Slacos1 mutants at the tetrad stage. The fatty acid metabolism in anthers was significantly impacted by mutation of the SlACOS1 gene. Furthermore, targeted fatty acids profiling using GC-MS found that contents of most fatty acids except C18:1 and C18:2 were reduced. Yeast complementation assay demonstrated that the substrate preferences of SlACOS1 were C16:0 and C18:0 fatty acids. Male fertility of Slacos1 mutant could be slightly restored by applying exogenous palmitic acid, a type of C16:0 fatty acid. Taken together, SlACOS1 played important roles on pollen development and male fertility by regulating the fatty acid metabolism and the development of tapetum and tetrad. Our findings will facilitate unraveling the mechanism of pollen development and male fertility in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen , Flores/metabolismo , Fertilidade/genética , Ácidos Graxos , Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Front Immunol ; 15: 1295472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500883

RESUMO

Background: Data with fine granularity about COVID-19-related outcomes and risk factors were still limited in the idiopathic inflammatory myopathies (IIMs) population. This study aimed to investigate clinical factors associated with hospitalized and severe COVID-19 in patients with IIMs, particularly those gauged by myositis-specific antibodies. Methods: This retrospective cohort study was conducted in the Renji IIM cohort in Shanghai, China, under an upsurge of SARS-CoV-2 omicron variant infections from December 2022 to January 2023. Clinical data were collected and analyzed by multivariable logistic regression to determine risk factors. High-dimensional flow cytometry analysis was performed to outline the immunological features. Results: Among 463 infected patients in the eligible cohort (n=613), 65 (14.0%) were hospitalized, 19 (4.1%) suffered severe COVID-19, and 10 (2.2%) died. Older age (OR=1.59/decade, 95% CI 1.18 to 2.16, p=0.003), requiring family oxygen supplement (2.62, 1.11 to 6.19, 0.028), patients with anti-synthetase syndrome (ASyS) (2.88, 1.12 to 7.34, 0.027, vs. other dermatomyositis), higher IIM disease activity, and prednisone intake >10mg/day (5.59, 2.70 to 11.57, <0.001) were associated with a higher risk of hospitalization. Conversely, 3-dose inactivated vaccination reduced the risk of hospitalization (0.10, 0.02 to 0.40, 0.001, vs. incomplete vaccination). Janus kinase inhibitor (JAKi) pre-exposure significantly reduced the risk of severe COVID-19 in hospitalized patients (0.16, 0.04 to 0.74, 0.019, vs. csDMARDs). ASyS patients with severe COVID-19 had significantly reduced peripheral CD4+ T cells, lower CD4/CD8 ratio, and fewer naive B cells but more class-switched memory B cells compared with controls. Conclusion: ASyS and family oxygen supplement were first identified as risk factors for COVID-19-related hospitalization in patients with IIMs. JAKi pre-exposure might protect IIM patients against severe COVID-19 complications.


Assuntos
COVID-19 , Miosite , Humanos , Estudos Retrospectivos , Ligases , COVID-19/terapia , COVID-19/complicações , SARS-CoV-2 , China/epidemiologia , Miosite/complicações , Miosite/epidemiologia , Oxigênio
13.
Exp Mol Med ; 56(3): 721-733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528124

RESUMO

Acetyl-CoA synthetase 2 (ACSS2)-dependent acetate usage has generally been associated with tumorigenesis and increased malignancy in cancers under nutrient-depleted conditions. However, the nutrient usage and metabolic characteristics of the liver differ from those of other organs; therefore, the mechanism of ACSS2-mediated acetate metabolism may also differ in liver cancer. To elucidate the underlying mechanisms of ACSS2 in liver cancer and acetate metabolism, the relationships between patient acetate uptake and metabolic characteristics and between ACSS2 and tumor malignancies were comprehensively studied in vitro, in vivo and in humans. Clinically, we initially found that ACSS2 expression was decreased in liver cancer patients. Moreover, PET-CT imaging confirmed that lower-grade cancer cells take up more 11C-acetate but less 18F-fluorodeoxyglucose (18F-FDG); however, this trend was reversed in higher-grade cancer. Among liver cancer cells, those with high ACSS2 expression avidly absorbed acetate even in a glucose-sufficient environment, whereas those with low ACSS2 expression did not, thereby showing correlations with their respective ACSS2 expression. Metabolomic isotope tracing in vitro and in vivo revealed greater acetate incorporation, greater lipid anabolic metabolism, and less malignancy in high-ACSS2 tumors. Notably, ACSS2 downregulation in liver cancer cells was associated with increased tumor occurrence in vivo. In human patient cohorts, patients in the low-ACSS2 subgroup exhibited reduced anabolism, increased glycolysis/hypoxia, and poorer prognosis. We demonstrated that acetate uptake by ACSS2 in liver cancer is independent of glucose depletion and contributes to lipid anabolic metabolism and reduced malignancy, thereby leading to a better prognosis for liver cancer patients.


Assuntos
Glucose , Neoplasias Hepáticas , Humanos , Acetilcoenzima A/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Linhagem Celular Tumoral , Acetatos , Ligases
14.
Front Biosci (Landmark Ed) ; 29(3): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538251

RESUMO

BACKGROUND: Osteosarcoma cells are prone to metastasis, and the mechanism of N6-methyladenosine (m6A) methylation modification in this process is still unclear. Methylation modification of m6A plays an important role in the development of osteosarcoma, which is mainly due to abnormal expression of enzymes related to methylation modification of m6A, which in turn leads to changes in the methylation level of downstream target genes messenger RNA (mRNA) leading to tumor development. METHODS: We analyzed the expression levels of m6A methylation modification-related enzyme genes in GSE12865 whole-genome sequencing data. And we used shRNA (short hairpin RNA) lentiviral interference to interfere with METTL3 (Methyltransferase 3) expression in osteosarcoma cells. We studied the cytological function of METTL3 by Cell Counting Kit-8 (CCK8), flow cytometry, migration and other experiments, and the molecular mechanism of METTL3 by RIP (RNA binding protein immunoprecipitation), Western blot and other experiments. RESULTS: We found that METTL3 is abnormally highly expressed in osteosarcoma and interferes with METTL3 expression in osteosarcoma cells to inhibit metastasis, proliferation, and apoptosis of osteosarcoma cells. We subsequently found that METTL3 binds to the mRNA of CBX4 (chromobox homolog 4), a very important regulatory protein in osteosarcoma metastasis, and METTL3 regulates the mRNA and protein expression of CBX4. Further studies revealed that METTL3 inhibited metastasis of osteosarcoma cells by regulating CBX4. METTL3 has been found to be involved in osteosarcoma cells metastasis by CBX4 affecting the protein expression of matrix metalloproteinase 2 (MMP2), MMP9, E-Cadherin and N-Cadherin associated with osteosarcoma cells metastasis. CONCLUSIONS: These results suggest that the combined action of METTL3 and CBX4 plays an important role in the regulation of metastasis of osteosarcoma, and therefore, the METTL3-CBX4 axis pathway may be a new potential therapeutic target for osteosarcoma.


Assuntos
Adenina , Neoplasias Ósseas , Metaloproteinase 2 da Matriz , Osteossarcoma , Humanos , Adenina/análogos & derivados , Epigênese Genética , Ligases/genética , Metaloproteinase 2 da Matriz/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/secundário , Proteínas do Grupo Polycomb/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Neoplasias Ósseas/patologia
15.
Nat Struct Mol Biol ; 31(3): 536-547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316879

RESUMO

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , 60562 , Reparo do DNA , DNA/metabolismo , Ubiquitinação , Ligases , Receptores de Antígenos de Linfócitos T
16.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403312

RESUMO

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Assuntos
Isatis , Ligases , Ligases/genética , Isatis/genética , Regiões Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo
18.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
19.
Medicine (Baltimore) ; 103(6): e36448, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335428

RESUMO

Squamous cell carcinoma of the head and neck (SCCHN) is a commonly detected cancer worldwide. Human papillomavirus (HPV) is emerging as an important risk factor affecting SCCHN prognosis. Therefore, identification of HPV status is essential for effective therapies in SCCHN. The aim of this study was to investigate the prognostic value of HPV-associated RNA biomarkers for SCCHN. The clinical data, survival data, and RNA-seq data of SCCHN were downloaded from The Cancer Genome Atlas database. Before the differential expression analysis, the heterogeneity between the 2 groups (HPV+ vs HPV-) of samples was analyzed using principal component analysis. The differentially expressed genes (DEGs) between HPV+ and HPV- SCCHN samples were analyzed using the R edgeR package. The Gene Ontology functional annotations, including biological process, molecular function and cellular component (CC), and Kyoto Encyclopedia of Genes And Genomes pathways enriched by the DEGs were analyzed using DAVID. The obtained matrix was analyzed by weighed gene coexpression network analysis. A total of 350 significant DEGs were identified through differential analysis, and these DEGs were significantly enriched in functions associated with keratinization, and the pathway of neuroactive ligand-receptor interaction. Moreover, 72 hub genes were identified through weighed gene coexpression network analysis. After the hub genes and DEGs were combined, we obtained 422 union genes, including 65 survival-associated genes. After regression analysis, a HPV-related prognostic model was established, which consisted of 8 genes, including Clorf105, CGA, CHRNA2, CRIP3, CTAG2, ENPP6, NEFH, and RNF212. The obtained regression model could be expressed by an equation as follows: risk score = 0.065 × Clorf105 + 0.012 × CGA + 0.01 × CHRNA2 + 0.047 × CRIP3 + 0.043 × CTAG2-0.034 × ENPP6 - 0.003 × NEFH - 0.068 × RNF212. CGA interacted with 3 drugs, and CHRNA2 interacted with 11 drugs. We have identified an 8 HPV-RNA signature associated with the prognosis of SCCHN patients. Such prognostic model might serve as possible candidate biomarker and therapeutic target for SCCHN.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Prognóstico , Papillomavirus Humano , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas/complicações , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/complicações , Biomarcadores , RNA , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Ligases
20.
J Transl Med ; 22(1): 216, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424632

RESUMO

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...